
EntwicklerCamp 2012

Turbocharge Development in
Notes/Domino 8.5 – with Formulas!

By Rocky Oliver
Collaborative Technologies Geek

rocky.oliver@gmail.com
www.linkedin.com/in/lotusgeek

Introduction

●Began in Lotus-land in 1992

●Worked for large consultancies, pre-ipo startups, and out
on my own

●Worked for Lotus/IBM – twice!

●Written a couple of books

–Latest was “Notes and Domino 6 Programming
Bible” (Wiley, 2003)

●I'm available – HIRE ME!

Formulas - Background

● Formulas are the oldest language in Notesdom

● Based on the same API as all other scripting
languages

● Runs much, much faster - “closer to the iron”

● Provides shortcuts to powerful functionality

● Is outstanding at processing lists of stuff

● Continues to be updated in N/D

Formulas – Where to Use?

● Actions, buttons,
hotspots, etc.

● Computed values

● Hide/when formula

● Window titles

● Default field values

● Column formula

● Section editor

● Input validation

● Input translation

● View selection formula

● XPages!
● REMEMBER: Not all formulas can be used in

all situations!

Formula – Input Validation

● Input Validation formulas are used to validate
the value(s) entered into a field

● Provide conditions to define success and
failure, in a variety of ways

● Can also be used to cause other values to
change based on validation condition

● Primary @functions used are @If, @Failure
and @Success

Formula – Input Validation

● Use @Success to indicated value is correct

● Use @Failure to reject the value and provide a message
indicating so to the user

● @Success signals a True condition, which indicates
validation was successful; @Failure signals a False
condition, indicating the validation was not successful

● Validation formula is triggered when form is refreshed or a
save is attempted

● @Failure will cause the refresh or save to fail, and return
the cursor to the failed field (if not hidden)

Formula – Input Validation

● You can use @ThisField and @ThisValue to
reuse the same Validation Formula code
across multiple fields

@If(@ThisValue = “”; @Failure(“You must provide

an answer for the field “ + @ThisField + “.”);

@Success)

Formula – Input Validation

● You can prompt the user once for all fields that fail validation, if
desired

– Create a hidden, Computed For Display field at the bottom of the
form

– Use a formula like this (simple version – better one later):

@If(@DocIsBeingSaved & (Name = “” | Occupation = “”);

@Failure(“Please make sure all fields have a value”);

@Success)

Formula – Input Validation

● The highlighted @function,
@IsDocBeingSaved, allows you to have
formulas (such as Input Validation) that only
fire when the document is actually being saved

● Not using @IsDocBeingSaved will irritate your
customers, thereby causing you pain and
misery

Formula – Input Validation

● Validation formulas don't have to be simplistic; you can use them
to do a variety of validation types.

– Checking for a value or range of values:

@If(@ThisValue < 5 | @ThisValue >10; @Failure(“You must

enter a value between 5 and 10”); @Success)

– Even fairly complex validations, like U.S. Phone Numbers:

@If(@Matches(@ThisValue; “{0-9} {0-9} {0-9} {-} {0-9}

{0-9} {0-9} {-} {0-9} {0-9} {0-9} {0-9}”); @Success;

@Failure(“You must enter a U.S phone number in the

format of xxx-xxx-xxxx.”)

Formula – Input Translation

● Field Translation Formula is used to modify the
input value of a field into a format that is
usable for either a person or code

● Could be a simple as @Trim(@ThisValue) to
remove extra spaces

● Can also be used to do “quick fixes” on user-
provided data so a failed validation isn't
necessary

Formula – Keep These in Mind

● @ReplaceSubstring is another excellent function at string
manipulation, as it provides find and replace functionality on a
string

– Remove symbols from a string in a field
symbols := “!” : “@” : “#” : “$” : “%” : “^” : “&” :

“*” : “+” : “=”;

result := @Trim (@ReplaceSubstring (somefield1;

symbols; “”))

– Replace backslash with frontslash, such as URLs
@ReplaceSubstring (@ThisValue; “\” ; “/”)

– Replace new lines with spaces
@ReplaceSubstring (@ThisValue; @NewLine; “ ”)

Formula – Keep These in Mind

● @LowerCase, @UpperCase – great to make all values
consistent for comparison

– e.g. FOObar, fooBAR, and FoObAr are all the same
using @LowerCase (“foobar”)

● @IfError(... == @If(@IsError(...

● @Word – GREAT when used to obtain values from a
concatenated string or list of strings (think: “column”)

– Example

Formula – Keep These in Mind

● @Random – generates a random number from
0 to 1, inclusive

– Use formula from Help to generate a between any
two numbers:
(y - x) * @Random + x

● Example time!

Formula – Keep These in Mind

● Working with numerical values can be particularly difficult – even
in formulas

– 3.33 * 3.33 == 10.89 is easy

– 3.33333*3.33333 == 11.1110888889... not so much

● @Round allows you to make decimal places consistent

– Caveat: @Round does NOT work the same as LS Round!

– @Round(7.7255; 0.01) == 7.73 (nearest decimal place)

– Round(7.7255, 2) = 7.73 (# of decimal places)

Formula – These are Handy

● @ThisValue and @ThisName

– Used in field Translation and Validation formulas

– @ThisName == the name of the current field

– @ThisValue == the value of the current field

– (I've been using these earlier in the session)

● Allow for easy reuse of code between fields (i.e. you can copy/
paste them from one field to another

● These are not usable outside of the Validation and Translation
formula context

Formula – These are Handy

● @SetEnvironment and @Environment

– Allows you to set your own environment variables OR system
variables in the user's NOTES.INI

– Quick-n-dirty, old school way to pass information back and
forth between LotusScript and Formulas

– @Environment can be used to both set AND retrieve an
environment variable

● Best Practice? @SetEnvironment for setting,
@Environment for getting; it makes the code easier to
understand

Formula – Date/Time Manipulation

● @Adjust allows you to change a date/time
value, from year to second

– Combination of all “Adjust...” functions in LotusScript

– @Adjust(dateVar; Y; M; D; H; M; S)

– If changing more than one param, @Adjust
evaluates RIGHT to LEFT (i.e. from Second, through
to Year)

Formula – Working with Text Lists

● One of the Formula Language's true strengths
is text manipulation

● There are many, many formulas that work with
both single values and text lists

– @Word was an example earlier

● Here are a few others that are helpful...

Fun with Lists – Trim and Replace

● @Trim – does what it says, i.e. removes leading,
trailing, and extra spaces from a string or list of strings

● @Replace... replaces items in a source list that match
items in a second list with items in a third list to produce
a new list (more on this later)

● @Trim(@Replace – very powerful for list manipulation

– Example time!

Fun with Lists - @Unique

● @Unique leads two lives

– With no parameters it generates a unique
alphanumeric string

– When provided a list of values it removes duplicates
and returns a list of unique values

Fun with Lists - @Sort

● @Sort is not only capable of standard sorting, it also has unique
abilities for “unconventional” sorting as well

● You can sort ascending, descending, case sensitive/insensitive,
and so on – the normal stuff

● You can also provide a custom sort formula

– Use $A to represent the current value, and $B to represent the next
value in the list

– The formula is evaluated – if True, it does not change the order; if
False it swaps them

– Then $B becomes $A, and the next value becomes $B

● Example Time! (This should make it easier to understand...)

@Transform and @For

● @Formulas have the ability to “loop” now, like
While, For, and Forall statements in LS

● @For – works identically to the JavaScript
version of For

● @Transform – think of it as “@ForAll”, as this
will help you keep it straight

@For – the Basics

● Syntax for @For:

@For(start; evaluation; iteration; formula)

– Start == the starting number for the evaluation

– Evaluation = the condition to evaulate whether another loop is
warranted; if true, run the formula again; if false, end the loop

– Iteration == the increment by which the start number should
be incremented

– Formula == the number that is executed on every loop

@For - Example

● @For(n := 1; n <= @ Elements (customers); n := n + 1;
custmail[n] := @ReplaceSubstring(customers[n]; “ “; “.”) +
“@customerdomain.com”);

custmail

● This simply iterates through a list of customers and creates an
email for each of them by replacing any spaces with periods, and
appending “@customerdomain.com” to them; the resulting list is
assigned to the custmail variable

@Transform - Syntax

● Syntax:
@Transform(someList; varName; formula)

● SomeList == the list of values to be modified

● VarName == a STRING of the variable that
represents the current list member being
processed

● Formula == the formula being applied to the list
member

● Examples

@Transform – the Basics

● @Transform is basically @Forall

● It takes a list and allows a formula to be run
against every member of a list

● It is very, very fast

View Selection Formulas

● Couple of pointers on View Selection Formulas

– You cannot use @DbColumn or @DbLookup in
View Selection Formulas (although it would be nice)

– Do not use Time values (like @Today) – HUGE
performance issues

– Use @AllDescendants instead of @IsResponseDoc

Formula – Let's Talk about @Text

● @Text, on the surface, simply ensures that a value is a
text value – and if not, it converts the value to text; but it
does more

● A 2nd parameter can be provided to @Text to format a
date/time value and present it a number of ways

● A 2nd parameter can be provided to @Text to format a
numeric value many ways as well

● Help has all of the various codes for the 2nd parameter

@Text – One More Thing

● Often have problems getting numeric values
from fields, even when field is “number”

● “Type cast” the number to make sure it's a
number by using @TextToNumber(@Text
(numField))

● Same thing for date fields - @TextToTime
(@Text(datetimeField))

@Matches

● @Matches determines if a value matches another value, or a
provided pattern

● True is returned if the first value matches the second, or the
pattern provided in the second parameter

● Allowed wildcards and patterns are in Designer Help

● Example: Earlier demonstrated checking a U.S. phone number
(xxx-xxx-xxxx)

@Matches(@ThisValue; “{0-9} {0-9} {0-9} {-} {0-9} {0-9}

{0-9} {-} {0-9} {0-9} {0-9} {0-9}”)

Formulas in XPages

● XPages are now available in Domino 8.5.x

● @Formula is available to use in Server Side JavaScript (SSJS)

● Not all @Formula are supported in Xpages

● Three syntactic changes to use @Formula in XPages:

– Use commas rather than semicolons

– Use exact case

● Example: var uname = @Name(“[CN]”, @UserName())

– NULL should be used in place of 0 for formulas (such as
@Adjust discussed)

Formulas in XPages

● Unfortunately the Designer Help is not very useful

– Very few examples for Xpages formulas

– Syntax stuff omitted from descriptions

– EXAMPLE: Quotes are needed on formula keywords -
@Name(“[CN]”, name) – needs those quotes

– Parens are needed on all formulas, even if it takes no
parameters - @UserName() – needs those parentheses

