
Copyright © 2019 HCL Products & Platforms | www.hcltech.com

DQL (Domino Query Language)

Developer’s Deep Dive

March 26, 2019

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential2

SETTING DEEP DIVE EXPECTATIONS

 Presumes NOTHING about your DQL knowledge except you want to know it all

 LOTS of detail, LOTS of content

▪ Some detail subject to change

 Questions/comments encouraged though we will move fast

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential3

DOMINO GENERAL QUERY FACILITY DEEP DIVE AGENDA

Introducing DQL

▪ Syntax with processing details and DEMOs

Design Harvesting/Design Catalog

Programming DQL

▪ DQLExplorer

▪ DomQuery tool

▪ (Notes)DominoQuery class

Performance

Security

Remaining design decisions

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential4

INTRODUCING DQL (DOMINO QUERY LANGUAGE)

First – the name

▪ Query Facility – that which compiles, plans and executes queries

▪ Query Language – the language which specifies the queries to run (current DQL is our 2nd one)

Target developer – node.js Domino neophyte

▪ A facility running in Domino core allowing for a terse shorthand syntax for finding documents
according to a wide variety of complexity of terms. It leverages existing design elements without the
need to write detailed code to access them.

▪ Once concept was proven, inclusion in Domino backend (Notes)Database class was an easy fit

▪ Command line (shell/DOS prompt) invocation

• How it was developed

• node.js from command line adds even more power

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential5

INTRODUCING DQL (DOMINO QUERY LANGUAGE) – PROBLEM 1

Problem:

 In a order-handling, workflow database containing 2M documents, you have 10
minutes to mark a specific set of documents for follow-up mail campaign. The
criteria are:

Orders that originated in Detroit, Albuquerque, or San Diego only

Originated between 15 July 2014 and 14 July 2015

Contain each of 4 part numbers ordered (a multiply occurring field): 389, 27883, 388388, 587992

Are NOT in two special folders ‘Special processing’, ‘Special2’ and NOT in the view ‘Soon to be special’

Were NOT sold by Christen Summer or Isaac Hart

Find those documents and add a promo_code field of ‘FLLWUP_2014’

AND … GO! (how do you do it?)

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential6

Solution (using Domino Query Language (DQL) in ND10):

Order_origin in ('Detroit', 'Albuquerque', 'San Diego') and

Date_origin >= @dt('2014-07-15') and Date_origin <= @dt('2015-07-14’) and

partno in all (389, 27883, 388388, 587992) and not

in ('Special Processing', 'Special2' , 'Soon to be special’) and not

sales_person in ('Christen Summer', 'Isaac Hart')

Documents are then easily updated to insert promo_code = ‘FLLWUP_2014’ using bulk document
processing provided by the domino-db node.js API

The whole “job” runs from command line after a few trials testing the query

INTRODUCING DQL (DOMINO QUERY LANGUAGE) – PROBLEM 1 SOLUTION

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential7

INTRODUCING DQL (DOMINO QUERY LANGUAGE) – PROBLEM 2

Problem:

A new application developer, skilled in node.js and MongoDB from university, is
hired to write Domino applications using node.js, creating a database from scratch.
After designing the database schema (fields, documents), s/he needs to read,
update and delete sets of documents as part of the application. The fields and
searches change constantly as the design changes to meet dynamic requirements.
How does the developer find documents to process?

AND .. GO! (How do you instruct the developer to work with documents in Domino?)

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential8

Solution:

Use the ND10 Domino General Query Facility

 Familiar syntax construction, not unlike SQL or Cassandra

 Improvement over MongoDBs manual Boolean tree construction

 No prior knowledge of (though the DQL will use) design elements of forms, views or folders

 No need to learn Formula Language but existing formulas can be leveraged

 Where views and folders provide value for queries, they can be specified in the syntax

INTRODUCING DQL (DOMINO QUERY LANGUAGE) – PROBLEM 2 SOLUTION

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential9

INTRODUCING DQL - TERMINOLOGY

 Syntax – the components of the language with rules, order, spacing, etc.

 Term – smallest component of a query - <fieldname (sometimes optional)> <operator> <value>

 Boolean – conditional operation to be performed on multiple terms – AND, OR, NOT

 Identifier – the left side of a term – field or view column (or not needed)

 Operator – specifies comparison between left and right sides of a term - =, >=, >, <=, <, IN

 Value – the right side of a term (may be multiple)

 Precedence – the order in which a query’s terms are executed

 Foundset/Result – the group of documents returned by a term, Boolean, or entire query

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential10

 Language constructs, syntax - identifiers and operators

{<identifier>} <operator> <value(s)>

▪ Some operators need no identifier

▪ Operators are >, >=, =, <, <=, in {all} , contains {all}

▪ Identifiers are

• Sometimes not required (IN and CONTAINS)

• Summary field names in the database – (though CONTAINS can reference ANY field)

▪ Will not compile if there are no documents with that field in the database

▪ Will find no documents if you use non-summary fields (except CONTAINS)

▪ @functions (so far) @All, @ModifiedInThisFile, @DocumentUniqueID, @Created

 Boolean support – AND/OR/NOT

 “Natural” precedence of terms – ANDs before ORs except after NOTs + parentheses overrides

Order_no = 3342 and sales_person = ‘Trudy Ayton’ or order_no = 23334 and sales_person = ‘Norton Jaden’

INTRODUCING DQL

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential11

The IN operator

▪ With field or view column name - finds any field value in the parentheses (same as ORed terms)

Part_no in (388388, 724, 90022) // part_no = 388388 or part_no = 724 or part_no = 90022

Order_date in (@dt(‘2018-09-01’),@dt(‘2019-03-26T07:23:01.0000’), @dt(‘2019-03-27’))

Sales_person in (‘Trudi Ayton’, ‘Joshua Robinson’, ‘Erika Weber’)

▪ Without field or view column name – finds documents in any of the view or folder names in the
parentheses

in (‘Sales_2018’, ‘Trudi_orders’, ‘Special Handling’)

in (‘New folder 3’, ‘Returns’)

▪ With all operator for field values or view/folder names – does exclusive find (only values or documents
in ALL

Part_no in all (388388, 724, 90022) // documents having multiple part_no field values with all values matching

in all (‘Sales_2018’, ‘Trudi_orders’, ‘Special Handling’) // documents in every one of the folders and views

INTRODUCING DQL

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential12

INTRODUCING DQL - IN VIEW TERMS

DQL allows you to leverage EXISTING views and folders as document sets
▪ Views

▪ Pre-selected sets of documents, kept current according to arbitrarily complex
selection criteria

▪ If your data is dynamic, use views in your IN clauses

▪ Folders

▪ Can be populated and repopulated on the fly with random query results

▪ If you want to reuse query results in other queries OR if you have static
document sets you want to keep using, use folders in your IN clauses

▪ New concept to some – folders in applications

▪ BOTH views and folders can propagate – need to be managed

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential13

The CONTAINS operator (ND11)

▪ With field name - finds any word or phrase in the parentheses

Order_description contains (‘Nuts’, ‘Bolt*’, ‘Washer?’) // supports wildcard

▪ Without field name – finds any word or phrase in the parentheses across the entire database (all fields)

contains (‘Trudi’, ‘San Francisco’, ‘Backorder spec*’)

▪ With all operator with or without field names – finds documents containing every word of phrase in the
parentheses

Order_description contains all (‘Nuts’, ‘Bolt*’, ‘Washer?’)

▪ NOT the same as “=“ – myfield contains (‘Habitat’) will find

• ”Habitat for humanity”, “Perfect habitat for hares and squirrels” as well as just “Habitat”

• BUT you know your data values of course

INTRODUCING DQL

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential14

 Language constructs, syntax - identifiers and operators (continued)

• ‘viewname’.column name construct – will not compile if the view doesn’t have that name in a collated column:

▪ All identifiers and operators and @function names are case insensitive

▪ Value datatype determines type of search

‘string’ | @dt(‘<date>’) | <number>

• where

▪ ‘string’ is by default case and accent insensitive

▪ Legal <date> values must in in RFC3339 format (Date only, Time only supported)

▪ Legal <number> are all floating point notation, include scientific E-format

DEMO 1

INTRODUCING DQL

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential15

 Small print

▪ @dt(‘2019-03-26’) and @dt(‘09:03:37.0000’) will NOT use view lookup – need full RFC3339 timedate – NSF scan

▪ Maximum string value size is 256 bytes

▪ Use of view columns (implicit and explicit) has rules

INTRODUCING DQL

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential16

INTRODUCING DQL – HOW THE SYNTAX IS PROCESSED

Operation Views NSF Scan Full text (V11)

Field = ‘value’ (string) X X X (know your data)

Field = @dt(‘date’) X X

Field = number X X

Field contains ‘value’ (V11) X

Field IN (all) (value1, value2 …) (all types) X X

Field >, >=, <, <= value (all types) X X

‘View’.column =, >, >=, <, <=, in (all) value X

Document contains ‘value’ (V11) X

Documents in (all) views or folders by name X

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential17

 Language constructs, syntax - identifiers and operators (continued)

▪ @function values are according to their expected type

▪ @All – if specified, the only token that can be in a query

▪ @Created, @ModifiedInThisFile - @dt(‘<RFC3339 compliant timedate>’)

▪ @DocumentUniqueID – Unique Identifier string

@documentuniqeid = '9DCCEA37842AD0F38525828C0079C95A'

INTRODUCING DQL

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential18

INTRODUCING DQL - SAMPLE QUERY EXAMPLES

Order_origin in (‘London’, ‘LA’, ‘Tokyo’) AND date_origin > @dt(‘2016-05-11’) or partno = 388388

Finds documents with (any of the order_origin field values of ‘London’, ‘LA’ or ‘Tokyo’ AND

sales date greater than 11 May 2016) OR having Part number of 388388

(In all (‘Soon to be special’, ‘Main View’) or order_no > 12751 and order_no < 14334) and

sales_person = ‘Trudi Ayton’

Finds documents that are (in BOTH ‘Soon to be special’ and ‘Main View’ or have order numbers between

12751 and 14334) and were sold by Trudy Ayton

‘Soon to be special’.Status = ‘Shipping’ and (order_origin = ‘LA’ or

sales_person in (‘Chad Keighley’, ‘Jeff Chantel’, ‘Louis Cawlfield’, ‘Mariel Nathanson’))

Finds documents with values of ‘Shipping’ using the Status column in the ‘Soon to be special’ view AND with

either an order_origin of ‘LA’ or sold by any of Chad Keighley, Jeff Chantel, Louis Cawlfield or

Mariel Nathanson

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential19

INTRODUCING DQL - VALUE

For Domino
beginners

Set-based
processing

Programming
power

High performance

Guards investment

Domino centric

 Database context-free searching – no deep design knowledge required

 Built with node.js as target environment and programming model

 Full support for boolean processing - AND, OR, NOT

 Concise shorthand accomplishing complex and detailed find operations

 Simple to read EXPLAIN output to show how to optimize

 Seamless invocation from either node.js or Lotusscript/JAVA

 Perfect fit into Domino backend (Notes)DocumentCollection object

 All documents in existing or new Views or Folders can be ANDed, ORed

 View/Folder column values (utilizing all existing design)

 @ModifiedInThisFile, @DocumentUniqueID, @Created support

 Automatically finds view columns to use to satisfy query terms

 Partial results injected into child and sibling processing for smart, optimal atomic search operations

 Limit values in the API to control runaway queries

 Simple yet powerful bulk-operations support

 No need to code loops or do document-at-a-time processing

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential20

DESIGN HARVESTING/DESIGN CATALOG

Existing design elements and DQL

▪ Since high-speed access to design element innards is not possible using design notes

• They need to be extracted –

▪ a process called design harvesting

▪ fast-access data stored in the design catalog (current name – GQFdsgn.cat), housing metadata for
views and view columns

▪ V11 – GQFDsgn.cat goes away and design catalog is inboard – in the application database)

▪ No, we won’t be providing access to it – it will not be there in ND11

Harvesting/exposing existing design for Domino neophytes, node.js
developers will be a theme going forward with other node.js features

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential21

DESIGN HARVESTING/DESIGN CATALOG

 Updall and Design Harvesting

▪ 2 new updall flags –

Updall <database path> -d = Design catalog refresh

Updall <database path> -e = Design catalog rebuild (for this database)

▪ Unless design catalog populated for a database, DQL will not execute

DEMO (2) of updall –e

 Caveats

▪ Secure views (with reader lists) not supported (until ND11)

▪ Bugs (FP2)

• Hidden views (and their databases) fail to load (SPR JCUSBAFRN2)

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential22

DEMO 3 – DQLExplorer

 DomQuery <options>
-f [DBName] data directory relative path, REQUIRED

-q [double quoted string query] query string - either this or -z file required

-z [QueryFile path] full path to a file containing query syntax queries

delimited by #* at preceding line begin

-e Explain the nodes

-p Parse only (for testing)

-v [MaxEntries] Maximum view entries to be scanned

-c [MaxDocsScanned] Maximum number of documents to be scanned

-m [Msecs] Maximum milliseconds to execute

-x Exit on error (-z file case)

-j No view processing performed (only NSF document scan and FT)

-o [Output Report File path] full path to a file to which output will be written

 Finds documents and counts them – to get queries operational and optimized (-e recommended)

PROGRAMMING DQL - DQLEXPORER AND DOMQUERY

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential23

PROGRAMMING DQL – JAVA AND LOTUSSCRIPT

New 10.0.1 backend class – (Notes)DominoQuery
▪ Created via (Notes)Database.createDominoQuery()

▪ Methods

▪ Parse – flags any syntax errors, does not run queries

▪ Explain – executes the query, returns the way it was done – for tuning

▪ Execute – executes the query, returns a (Notes)DocumentCollection

▪ (Notes)DocumentCollections can be walked, intersected, etc.

▪ SetNamedVariable, ResetNamedVariables

▪ Attributes (Methods in Java)

▪ NoViews – Run without view access (some syntax will fail)

▪ MaxScanDocs, MaxScanEntries, TimeoutSec – limit settings (described later)

▪ RefreshViews – all views opened and refreshed before used

Query

String

Input

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential24

PROGRAMMING DQL – JAVA AND LOTUSSCRIPT – IN VIEW TERMS
Example – ONLY with small results (< 5000) where the query runs long

▪ London orders originating in 2018 will not grow or change (it’s 2019)

▪ Code (Java)

▪ At this point, the “London_Orders_2018” folder is available for all query
inclusion/exclusion

▪ Also, Part Numbers between 200000 and 205000 require special handling, and you
ALWAYS want to find them as a document set, up to date, in queries

▪ Create (or use the existing) Parts_200000 view with selection criteria of

DominoQuery dq = db.createDominoQuery();

String query = (“order_origin = ‘London’ and order_origin >= @dt(‘2018-01-01’) and

date_origin < @dt(‘2019-01-01’)”

DocumentCollection doccol = dq.execute(query);

View ordfold = db.EnableFolder(“Orders_2018”);

doccol.putAllInFolder(“London_Orders_2018”);

SELECT Part_no >= 200000 & Part_no <= 205000

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential25

PROGRAMMING DQL – JAVA AND LOTUSSCRIPT – IN VIEW TERMS

Example
▪ Sample queries you can run with this folder and view (in view terms are fast!):

In (‘Orders_2018’, ‘Parts_200000’) – documents in either

In all (‘Orders_2018’, ‘Parts_200000’) – documents in both

In (‘Orders_2018’) and not in (‘Parts_2000000’) – documents in 2018 that are

NOT in Parts_200000

Order_origin = ‘LA’ and in (‘Parts_200000’) and not

in (‘Orders_2018’) – Los Angeles orders in Parts_200000 and NOT in 2018

Part_no in all (198013, 111900, 304566) and

in all (‘Orders_2018’, ‘Parts_200000’) – orders originating in 2018 and

in Parts_200000 which also contained

each of the parts 198013, 111900 and 304566

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential26

PROGRAMMING DQL – JAVA AND LOTUSSCRIPT

“SQL Injection” attack exposure and remedy
▪ Problem – queries are built on the fly, exposing syntax to users

▪ … if user entered “299333 or sales_person < ‘’ ” the query returns every document

▪ Solution – named substitution variables

▪ Use setNamedVariable prior to Execute call:

▪ Supports all (3) data types

String queryString = “part_no = “ +

part_no_input + // string supplied by user input

“ or in (‘orders_2018’)”;

String queryString = “part_no = ?partno or in (‘orders_2018’);

dq.setNamedVariable(“partno", 299333); // where “partno” MUST match the query token following ?

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential27

PROGRAMMING DQL – JAVA AND LOTUSSCRIPT

“SQL Injection” attack exposure and remedy (continued)
▪ You MUST call resetNamedVariables to clear memory to change values or to use

different query syntax with different names

▪ Substitution variables can appear anywhere in DQL syntax a value can appear

▪ Including view names within in terms (NOT ‘viewname’.columnname)

dq.resetNamedVariables();

dq.setNamedVariable(“partno", 299333);

dq.setNamedVariable(“view1", “Orders_2018”);

dq.setNamedVariable(“view2", “Parts_200000”);

dq.setNamedVariable(“sp", “Trudi Ayton”);

dq.setNamedVariable(“dtorigin", Trudi Ayton”);

String queryString = “part_no = ?partno or in all (?view1, ?view2) or sales_person = ?sp”);

Doccol = dq.execute(queryString);

…

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential28

PROGRAMMING DQL – JAVA AND LOTUSSCRIPT

Related (and very useful) feature to (Notes)ViewEntryCollection object
▪ Problem – when (Notes)DocumentCollections are intersect’ed or subtract’ed from a

ViewEntryCollection, it loses whatever document order was in forced when the
ViewEntryCollection was created

▪ Solution – add new argument (maintainOrder) to preserve that order, allowing for
automatic sorting of DQL results (Java)

DEMO 4 – Sorted results using intersect parameter maintainOrder

DominoQuery dq = db.createDominoQuery();

View myview = db.getView(“Myview”);

myview.resortView(“column7”); // establishes specific order for the view

ViewEntryCollection vec = myview.getAllEntries();

DocumentCollection doccol =

dq.execute(“sales_person = ‘Trudi Ayton’ and part_no in all (399322, 389923, 378883)”);

vec.intersect(doccol, true); // second parameter is NEW to 10.0.1 – maintain order

ViewEntry ve = vec.getFirstEntry();

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential29

order_no > 146715

DQL PERFORMANCE – BOOLEAN TREES

order_no > 146751 and sales_person = 'Trudi Ayton’ and order_origin = ‘Detroit’ and special_processing = 0

becomes

Where

• each “leaf” node can be executed in order according to cost (speed) – NOT in query term order

• the results of each leaf node can be injected other siblings as a pre-filter

• Boolean nodes control performance

sales_person = ‘Trudi Ayton’ order_origin = ‘Detroit’ special_processing = 0

AND

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential30

DQL PERFORMANCE

 Views and view columns

▪ In order for DQL to use a view column for solving a <field> <operation> <value> query term

1. View must have only Select @All as its selection criteria

2. There must be a collated column with ONLY the field name as its formula

▪ A collated column is either the leftmost column in the view with Sort order of Ascending checked in the view or

▪ A column with checked

3. Column must be non-categorized and show multiple values as separate entries (for multiply occurring fields)

▪ If you want to use a view column that DOESN’T conform, use the ‘Viewname’.column syntax

• It must be sorted ascending

• Allows for dual selection – by view selection criteria and query term

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential31

 View searching is faster than NSF scans, particularly for small ranges or equality searches

▪ If you want to optimize a document scan, create a compliant collated index column

▪ NSF scans are summary only and use injected prior results

 ANDing and ORing and sibling optimization

▪ Sibling terms – any set of terms ANDed or ORed at the same precedence level

▪ For this query:

order_no > 146751 and sales_person = 'Trudi Ayton’

where both order_no and sales_person can use qualifying view indexed columns ..

DQL the results of the cheaper term (sales_person = ‘Trudi Ayton’) are injected into the more expensive one

Terms must be ANDed together for this optimization

DQL PERFORMANCE

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential32

DEMO 5 – optimizing order_no range query by adding an index

DQL PERFORMANCE

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential33

 ANDing and ORing and sibling optimization (continued)

▪ ANDed, Index-satisfied range siblings:

order_no > 146751 and order_no < 150111

will use a single, bounded view scan to satisfy both terms:

▪ All NSF scan siblings (ORed or ANDed) are satisfied with one pass of the document summaries

▪ NSF scans are smart and pre-filtered when possible

DQL PERFORMANCE

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential34

 Max limit settings

▪ To protect from runaway queries

• All settings are cumulative for processing for the entire query (defaults subject to change)

• MaxDocsScanned – maximum allowable NSF document scanned (500000)

• MaxEntriesScanned – maximum allowable index entries scanned (200000)

• MaxMsecs – maximum time consumed in milliseconds (300000) (5 minutes)

• Limits checked periodically across all operations

• Can be overridden via notes.ini for the server or per call to the DGQF

▪ If limits are exceeded DQL will return an error and no results

DQL PERFORMANCE

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential35

 EXPLAIN

 Tool to show the Boolean tree used to process your query:

order_no = 149497 or partno = 389 or order_origin > 'detroit’

DQL PERFORMANCE

0. OR (childct 3) (totals when complete:) Prep 0.0 msecs, Exec 319.340 msecs, ScannedDocs 10000, Entries 5410, FoundDocs 7918

1.order_no = 149497 View-based equality search estimated cost = 5

Prep 0.170 msecs, Exec 0.771 msecs, ScannedDocs 0, Entries 1, FoundDocs 1

1.partno = 389 NSF document search estimated cost = 100

Prep 0.55 msecs, Exec 139.713 msecs, ScannedDocs 10000, Entries 0, FoundDocs 5400

1.order_origin > 'detroit' View-based range search estimated cost = 10

Prep 0.102 msecs, Exec 178.849 msecs, ScannedDocs 0, Entries 5409, FoundDocs 5409

Level in tree Parent boolean node Total execute time (for all children) NSF scanned count View entry scan count Total found

Individual query terms Used NSF document scan Used View entry scan Relative estimated cost (scale of 1-100)

Preparation time (compile, plan) Execution time Number scanned documents Number scanned view entries Total found

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential36

Cardinality –

▪ All Domino (and for that matter all database) operations go slower with more data to find and process

▪ Processing > 10K documents may create too much lag for people waiting for data

▪ High cardinality queries (most useful for reporting and batch processing) should be run off-hours or in
batch mode

Volatility/Contention

▪ Due to the number of views and indexes within them, Domino indexing is periodic, NOT at time of
updates

▪ When lots of threads try to “refresh” (really “update”) a view, they will contend and wait for each other

▪ Some remediation with V10 inline indexing

DEMO 6 - Cardinality

DQL PERFORMANCE – HOW DQL CAN BECOME SLOW

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential37

DQL AND SECURITY

Honoring reader lists
▪ Reader list processing slows down view processing but no effect on NSF document scanning

▪ View and folder document extraction (IN clause with view names) can be VERY expensive when
processing Reader lists

• If multiple views/folders are specified with IN ALL (ANDing the sets), reader list processing only
necessary on the smallest view or folder (counts are kept in the design catalog)

• For ORing, when a view has lots of documents, it will exceed the view entry maximum and fail the
query

Design ACLs
▪ V10 - to avoid breaching security of ACL-protected views, design catalog CANNOT be exposed

• Server ID only has read/write privileges

• Fixed in V11

▪ Disclaimer – we may need to exclude ACL-protected views from the catalog entirely

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential38

Processing Reader lists is NOT free!

Poll – show of hands for Option A or B

Of course there is Option C – HCL drastically speeds up reader list processing,
but it will be a V12 effort

DQL REMAINING DESIGN DECISIONS

Option A Option B

Results returned filtered by reader lists Results and include documents and, application code

Counts are filtered – do not include documents the user
cannot see

Counts include documents that user can’t see

Application code requires no logic to catch security filtering Application code has - if doc.IsValid() = TRUE

Speed: 10 seconds/1 minute/10 minutes Speed: 100 msecs/600 msecs/6 seconds

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential39

Multi-database queries
Current plan is to deliver

▪ Federated queries – same query, same fields across multiple databases
(NOT joins)

▪ Sorted results across all database

Formula Language

 Avoid direct @functions in the DQL syntax

 Instead, supply named reference to already-existing Formula Language
entities – e.g. (sub)form display-only fields

 But .. what are the critical @functions that should be in raw in DQL?

DQL REMAINING DESIGN DECISIONS

Copyright © 2018 HCL Technologies Limited | www.hcltech.com | HCL Confidential40

Questions/discussion

